Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 38(3): 1596-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21520871

RESUMO

PURPOSE: To investigate the response of plastic scintillation detectors (PSDs) in a 6 MV photon beam of various field sizes using Monte Carlo simulations. METHODS: Three PSDs were simulated: A BC-400 and a BCF-12, each attached to a plastic-core optical fiber, and a BC-400 attached to an air-core optical fiber. PSD response was calculated as the detector dose per unit water dose for field sizes ranging from 10 x 10 down to 0.5 x 0.5 cm2 for both perpendicular and parallel orientations of the detectors to an incident beam. Similar calculations were performed for a CC01 compact chamber. The off-axis dose profiles were calculated in the 0.5 x 0.5 cm2 photon beam and were compared to the dose profile calculated for the CC01 chamber and that calculated in water without any detector. The angular dependence of the PSDs' responses in a small photon beam was studied. RESULTS: In the perpendicular orientation, the response of the BCF-12 PSD varied by only 0.5% as the field size decreased from 10 x 10 to 0.5 x 0.5 cm2, while the response of BC-400 PSD attached to a plastic-core fiber varied by more than 3% at the smallest field size because of its longer sensitive region. In the parallel orientation, the response of both PSDs attached to a plastic-core fiber varied by less than 0.4% for the same range of field sizes. For the PSD attached to an air-core fiber, the response varied, at most, by 2% for both orientations. CONCLUSIONS: The responses of all the PSDs investigated in this work can have a variation of only 1%-2% irrespective of field size and orientation of the detector if the length of the sensitive region is not more than 2 mm long and the optical fiber stems are prevented from pointing directly to the incident source.


Assuntos
Método de Monte Carlo , Fótons , Plásticos , Contagem de Cintilação/métodos , Doses de Radiação , Água
2.
Med Phys ; 37(10): 5279-86, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21089762

RESUMO

PURPOSE: By using Monte Carlo simulations, the authors investigated the energy and angular dependence of the response of plastic scintillation detectors (PSDs) in photon beams. METHODS: Three PSDs were modeled in this study: A plastic scintillator (BC-400) and a scintillating fiber (BCF-12), both attached by a plastic-core optical fiber stem, and a plastic scintillator (BC-400) attached by an air-core optical fiber stem with a silica tube coated with silver. The authors then calculated, with low statistical uncertainty, the energy and angular dependences of the PSDs' responses in a water phantom. For energy dependence, the response of the detectors is calculated as the detector dose per unit water dose. The perturbation caused by the optical fiber stem connected to the PSD to guide the optical light to a photodetector was studied in simulations using different optical fiber materials. RESULTS: For the energy dependence of the PSDs in photon beams, the PSDs with plastic-core fiber have excellent energy independence within about 0.5% at photon energies ranging from 300 keV (monoenergetic) to 18 MV (linac beam). The PSD with an air-core optical fiber with a silica tube also has good energy independence within 1% in the same photon energy range. For the angular dependence, the relative response of all the three modeled PSDs is within 2% for all the angles in a 6 MV photon beam. This is also true in a 300 keV monoenergetic photon beam for PSDs with plastic-core fiber. For the PSD with an air-core fiber with a silica tube in the 300 keV beam, the relative response varies within 1% for most of the angles, except in the case when the fiber stem is pointing right to the radiation source in which case the PSD may over-response by more than 10%. CONCLUSIONS: At +/- 1% level, no beam energy correction is necessary for the response of all three PSDs modeled in this study in the photon energy ranges from 200 keV (monoenergetic) to 18 MV (linac beam). The PSD would be even closer to water equivalent if there is a silica tube around the sensitive volume. The angular dependence of the response of the three PSDs in a 6 MV photon beam is not of concern at 2% level.


Assuntos
Fótons/uso terapêutico , Contagem de Cintilação/estatística & dados numéricos , Fenômenos Biofísicos , Humanos , Modelos Estatísticos , Método de Monte Carlo , Imagens de Fantasmas , Plásticos , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Alta Energia/estatística & dados numéricos
3.
Med Phys ; 37(2): 461-5, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20229854

RESUMO

PURPOSE: Plane-parallel chambers are recommended by dosimetry protocols for measurements in (especially low-energy) electron beams. In dosimetry protocols, the replacement correction factor P(repl) is assumed unity for "well-guarded" plane-parallel chambers in electron beams when the front face of the cavity is the effective point of measurement. There is experimental evidence that ion chambers which are not well-guarded (e.g., Markus) have nonunity P(repl) values. Monte Carlo simulations are employed in this study to investigate the replacement correction factors for plane-parallel chambers in electron beams. METHODS: Using previously established Monte Carlo calculation methods, the values of P(repl) are calculated with high statistical precision for the cavities of a variety of plane-parallel chambers in a water phantom irradiated by various electron beams. The dependences of the values of P(repl) on the beam quality, phantom depth, as well as the guard ring width are studied. RESULTS: In the dose fall-off region for low-energy beams, the P(repl) values are very sensitive to depth. It is found that this is mainly due to the gradient effect, which originates from the fact that the effective point of measurement for many plane-parallel chambers should not be at the front face of the cavity but rather shifted toward the center of the cavity by a fraction of a millimeter. Using the front face of the cavity as the effective point of measurement, the calculated values of P(repl) at d(ref) are not unity for some well-guarded plane-parallel chambers. The calculated P(repl) values for the Roos chamber are close to 1 for all electron beams. The calculation results for the Markus chamber are in good agreement with the measured values. CONCLUSIONS: The appropriate selection of the effective point of measurement for plane-parallel chambers in electron beams is an important issue. If the effective point of measurement is correctly accounted for, the P(repl) values would be almost independent of depth. Both the guard ring width and the ratio of the collecting volume diameter to the cavity thickness can influence the values of P(repl) For a diameter to thickness ratio of 5 (e.g., NACP02 chamber), the guard width has to be 6 mm for the chamber to be considered as well-guarded, i.e., have a P(repl) value of 1.00.


Assuntos
Artefatos , Radiometria/instrumentação , Desenho Assistido por Computador , Elétrons , Desenho de Equipamento , Análise de Falha de Equipamento , Doses de Radiação , Radiometria/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Med Phys ; 34(5): 1734-42, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17555255

RESUMO

Silicon semiconductor diodes measure almost the same depth-dose distributions in both photon and electron beams as those measured by ion chambers. A recent study in ion chamber dosimetry has suggested that the wall correction factor for a parallel-plate ion chamber in electron beams changes with depth by as much as 6%. To investigate diode detector response with respect to depth, a silicon diode model is constructed and the water/silicon dose ratio at various depths in electron beams is calculated using EGSnrc. The results indicate that, for this particular diode model, the diode response per unit water dose (or water/diode dose ratio) in both 6 and 18 MeV electron beams is flat within 2% versus depth, from near the phantom surface to the depth of R50 (with calculation uncertainty <0.3%). This suggests that there must be some other correction factors for ion chambers that counter-balance the large wall correction factor at depth in electron beams. In addition, the beam quality and field-size dependence of the diode model are also calculated. The results show that the water/diode dose ratio remains constant within 2% over the electron energy range from 6 to 18 MeV. The water/diode dose ratio does not depend on field size as long as the incident electron beam is broad and the electron energy is high. However, for a very small beam size (1 X 1 cm(2)) and low electron energy (6 MeV), the water/diode dose ratio may decrease by more than 2% compared to that of a broad beam.


Assuntos
Elétrons , Modelos Teóricos , Método de Monte Carlo , Silício/química , Água/química , Doses de Radiação , Semicondutores
5.
Med Phys ; 34(2): 485-8, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17388165

RESUMO

The focal spot size and shape of a medical linac are important parameters that determine the dose profiles, especially in the penumbral region. A relationship between the focal spot size and the dose profile penumbra has been studied and established from simulation results of the EGSnrc Monte Carlo code. A simple method is proposed to estimate the size and the shape of a linac's focal spot from the measured dose profile data.


Assuntos
Algoritmos , Modelos Biológicos , Método de Monte Carlo , Aceleradores de Partículas , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Simulação por Computador , Doses de Radiação , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...